Epidemic Extinction and Control in Heterogeneous Networks
نویسندگان
چکیده
منابع مشابه
Epidemic extinction paths in complex networks.
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general c...
متن کاملExtinction Times of Epidemic Outbreaks in Networks
In the Susceptible-Infectious-Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction tim...
متن کاملSlow epidemic extinction in populations with heterogeneous infection rates.
We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals i and j is endowed with an infection rate β(ij)=λw(ij) proportional to the intensity of their contact w(ij), with a distribution P(w(ij)) taken from face-to-face experiment...
متن کاملEnergy-Aware Probabilistic Epidemic Forwarding Method in Heterogeneous Delay Tolerant Networks
Due to the increasing use of wireless communications, infrastructure-less networks such as Delay Tolerant Networks (DTNs) should be highly considered. DTN is most suitable where there is an intermittent connection between communicating nodes such as wireless mobile ad hoc network nodes. In general, a message sending node in DTN copies the message and transmits it to nodes which it encounters. A...
متن کاملEpidemic outbreaks in complex heterogeneous networks
We present a detailed analytical and numerical study for the spreading of infections in complex population networks with acquired immunity. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations, exhibit the lack of an epidemi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2016
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.117.028302